
Pen- (and Simple Touch-) Based
Interaction

Pen Computing

l Use of pens has been around a long time
l Light pen was used by Sutherland before Engelbart introduced

the mouse
l Resurgence in 90’s

l GoPad
l Much maligned Newton

l Then suppressed again by rise of multitouch (iPhone, iPad,
Android)

l Now coming back with MS Surface, etc.

2

Intro
l Deep dive on pens and “basic” touch interaction

l Why discuss these together?
l Interaction is actually somewhat different, hardware is somewhat different, but

software model is similar for both
l I’ll generally call this “pen interaction” since you don’t see so much basic touch

these days, but pens are still prevalent

l Our first example of a “natural data type”
l Form of input that humans normally do “in the wild,” not specially created to

make it easy for computers to interpret (as the case with keyboards and mice)

3

Natural Data Types

l As we move off the desktop, means of communication mimic
“natural” human forms of communication
l Writing..............Ink
l Speaking............Audio
l Seeing/Acting…………….Video

l Each of these data types leads to new application types, new
interaction styles, etc.

4

Interaction Model for Pens and
Simple Touch
l What’s the same for both pens and simple touch?

l 2D Absolute Locator in both cases: system detects contact and reports X, Y
coordinates

l Generally (but not always) used on a display surface. In other words, the site of
input is the same as the site for output
l One exception to this is trackpad, which more closely emulates a mouse
l Another exception is pens used on paper surfaces, but which can digitize

input and transmit to a computer
l Motion of pen or finger on surface can be interpreted to generate a stroke

l Succession of X,Y coordinates that—when connected—can act as “digital
ink”

5

Interaction Model for Pens and
Simple Touch
l What about differences?

l Obvious one: precision of input. Hard to do fine-grained input with
fingers, so difficult to do writing for instance

l Not so obvious? Pens usually build in many more dimensions of input
than just the basic 2D locator functionality (see next slide)

l What’s the difference between pens/simple touch versus the
mouse?

6

Dimensionality of Input

l What operations detectable
l Contact – up/down
l Drawing/Writing
l Hover?
l Modifiers? (like mouse buttons)
l Which pen used?
l Eraser?

l Fingers do not have the same dimensionality of input (when
used in the simple touch case), so we have to do things like
use gestures or switches for different modes of input

7

Quick Overview of Pen Hardware  
(we’ll talk about touch hardware later)

8

Example Pen (and touch)
Technology
l Passive: surface senses location of “dumb” pen, or finger

l Resistive touchscreen (e.g., PDA, some tablets)
l Contact closure
l Vision techniques (like MS Surface Tabletop)
l Integrated with capacitive touch sensing (like iPhone)
l Passive approaches also work for fingers!

l Active: pen or surface provides some signal, so that together they
can determine position
l Where is sensing? Surface or pen?
l Pen emits signal that are detected by surface

l e.g. IR, ultrasonic, etc.
l Wacom electomagnetic resonance

l Pen detects signals that are emitted by surface
l e.g., camera-based approaches that detect “signal” printed onto

surface
9

Passive Example #1: Palm Pilot
l Circa 1996
l 512kB of memory
l 160x160 monochrome resistive 

touchscreen
l Worked with fingers or pens

l Resistive technology:
l Two electrically sensitive membranes
l When finger or stylus presses down, two 

layers come into contact; system detects 
change in resistance

l Palm interaction innovation:
l Stylus (or finger) interpreted as command inputs to widgets in top of screen

area, but at bottom are interpreted as content via simple “unistroke”
recognizer

10

Passive Example #2: SmartBoard
l Circa 1991
l Optical technology:

l Requires specialized whiteboard
l Cameras mounted in each corner of the 

whiteboard
l Signals analyzed to determine position 

of stylus (or finger)
l Output projected over whiteboard, or  

rear projected

l SmartBoard interaction innovation:
l Can disambiguate multiple pens

11

Passive Example #3: Surface Table
l Circa 2007
l Optical technology (in original version):

l Cameras underneath table surface 
pointed upward

l Detect contact between objects and the  
surface

l (Uses frustrated total internal reflection  
technique, described later)

l Surface interaction innovation:
l Detects fingers (multiple ones), pens, and  

other objects
l Intended to support multi-user input

12

Active Example #1: mimio

l Circa 1997
l Pen emits signal, surface detects
l Active pens

l IR + ultrasonic
l Portable (!) sensor

l Converts any surface to input surface
l Ultrasonic pulses emitted by pens 

are triangulated by sensors to 
derive position

l Can chain these 
to create big surface

l http://www.mimio.com
13

Active Example #2: Wacom
l Considered current state-of-the-art in high-quality  

pen input
l Electromagnetic resonance technology

l Surface provides power to the pen via 
resonant inductive coupling (like  
passive RFID tags)—so no batteries 
needed in pens

l Grid of send/receive coils in surface,  
energize pen, detects returned signal

l Signal can be modulated to convey 
additional info (pressure, orientation,  
side-switch status, hardware ID, …)

l Read up to 200 times/second
l Wacom interaction innovations

l Extremely high dimensionality: pressure,  
orientation, tilt, etc etc.

14

Active Example #3: LiveScribe Pen

l “Smart pen” functionality while  
writing on real paper
l Tiny dot pattern printed 

onto paper (Anoto ™ paper)
l IR camera in pen detects  

position encoded in dots
l Each page has a unique ID so that pages can be

distinguished from each other
l Stroke data transferred back to computer in realtime via

Bluetooth
l Also includes timestamped voice recording capabilities

l Interesting app ideas: check out Paper PDA system from
Hudson, et al.

15

What can you do with a 2D
Locator? Interactions with Pens
and Simple Touch

l What kinds of interactions do these afford? Several basic types
l In increasing order of complexity:

l 1. Pen or touch as mouse replacement. BORING!
l 2. Specialized input techniques for pens (swipe, tap, tap+hold,  

pull-to-refresh, …)
l Sometimes coupled with haptic output, a la Force Touch?

l 3. Soft keyboards: on-screen interactors to facilitate text entry
l 4. Stroke input: free-form, uninterpreted digital ink

l 5. Stroke input: recognition and interpretation of digital ink

l As control input
l As content

16

1. Pen/Touch as Mouse
Replacement

17

Pen/Touch as Mouse
Replacement
l Pretty boring.
l Canonical case: Circa 2005 Windows XP Tablet

Edition
l Standard Windows interface—build for mouse

—but with a pen
l Extra software additions for text entry

l Lots of small targets, lots of taps required (e.g.,
menus) — a common failure mode with pen-
based UIs!

l More recent example: Windows 8 (and later)
mix touch-based with mouse-based interaction

18

2. Specialized Input Techniques for
Pens/Touch

19

l If you don’t assume a mouse, what would you do differently?
l Fewer menus: input at the site of interaction
l Don’t assume hover (no tool tips)
l Take advantage of more precise swipe movements, which are easier

with pen/touch

Pen & single finger touch gestures
l Typically inputs used for command input,  

not content input

l Most common: press/tap for selection
l Not really much of a “gesture” at all

l Slightly more complex:
l Double-tap to select

l Double tap, hold, and drag to move windows 
on OS X

l Tap, hold and drag to select text on the iPad

l Note: some of these don’t require a screen,  
just a touchable surface

20

Other examples
l One-finger:

l Special interactions on lists, etc.

l Example: swipe over mail message to delete

l Example: pull to refresh

l Specialized feedback for confirmation

l Still no good affordances though.

l Non-finger gestures?
l Surface--use edge of hand for special controls

l Technically “single touch,” although most hardware 
that can support this is probably multitouch  
capable

21

Example multitouch gestures
(cont’d)

 Touchscreen

 iPhone, Surface

 One-finger:

 Special interactions on lists, etc.

 Example: swipe over mail message to delete

 Specialized feedback for confirmation

 Still no good affordances though.

 Two-finger:

 Rotate, scale same as before

 Non-finger gestures?

 Surface--use edge of hand for special controls

29

3. Soft Keyboards

22

3. Soft Keyboards

Make “recognition” problem easier 
by forcing users to hit specialized 
on-screen targets

(Sometimes a blurry line between  
what’s “recognition” and what’s a 
“soft keyboard”)

common on small mobile devices

many varieties

•Key layout (QWERTY, alphabetical, …)

•learnability vs. efficiency

•language model/predictive input

•Earliest ones were focused on pen usage: small, high-precision targets. Newer approaches
targeted at touch usage.

23

Swype Keyboard
l User enters word by sliding finger or stylus from first word of a letter to

its last, lifting only between words.
l Uses language model for error correction, predictive text.

l Many similar systems: SwiftKey, SwipeIt,, etc.

l Original version started as a research prototype by Shumin Zhai (IBM, now
Google): Shorthand-Aided Rapid Keyboarding (SHARK) 24

T9 (Tegic Communications)

•Alternative tapping interface

•Phone layout plus dictionary

•Soft keyboard or mobile phone

•Not usually “pen based” but ideas for rapid text entry often
carry over from fingertips to pens

25

Quickwrite (Perlin)
“Unistroke” recognizer

• Start in “rest” zone (center)

• Each character has a major zone: large white areas

• ... and a minor zone: its position within that area

• To enter characters in the center of a major zone,  
move from the rest zone to the character’s major 
zone, then back

• Example: for A, move from rest to upper left  
zone then back to rest

• To enter characters at other points in a zone, move into the character’s major zone, then
into another major zone that corresponds to the character’s minor zone

• Example: F is in the top-right zone (its major zone). Move from rest to that major
zone. Since F is in the top-center of its major zone, move next into the top-center
major zone , then back to rest

• Allows quick, continual writing without ever clicking a mouse button or lifting the stylus
26

Cirrin (Mankoff & Abowd)

Word-level unistroke recognizer

Ordering of characters minimizes 
median distance the pen travels 
(based on common letter pairings)

27

4. Stroke Input: Free-form,
Unrecognized Digital Ink

28

4. Free-form ink

ink as data: when uninterpreted, the easiest option to implement

•humans can interpret

•time-stamping perhaps (to support rollback, undo)

•implicit object detection (figure out groupings, crossings, etc.)

•special-purpose “domain” objects (add a little bit of
interpretation to some on-screen objects)

•E.g., Newton: draw a horizontal line across the screen to
start a new page

•See also Tivoli work (Moran, et al., Xerox PARC)

29

Free-form ink examples

Notetaking and Ink-Audio integration

•Classroom 2000/eClass (GT)

•Dynomite (FX-PAL)

•The Audio Notebook (MIT)

•NotePals (Berkeley)

Systems with minimal/optional recognition

•Tivoli (Xerox PARC)

30

Classroom 2000 (later eClass)
l Marks made by professor at whiteboard are captured
l Simultaneously, student notes can be captured and shared
l Everything is timestamped; browsing interface includes a timeline that links

to video, slides, and notes

31

Classroom 2000 (later eClass)

32

Tivoli
l Mark Weiser predicted three form factors for post-PC computing:

l Tab (phone sized)
l Pad (tablet sized)
l Board (wall sized)

l PARC Liveboard hardware
l Large drawing surface
l Multipen input
l Detection of nearby  

tabs and pads via IR

33

Key Tivoli Ideas
l Recognize implicit structure of freeform material on the board

l In other words, don’t recognize text, but look for natural groupings in digital
ink

l Then, recognize only a small handful of input strokes that allow user to make
operations on these

l Examples:
l Strokes are automatically geometrically grouped based on position with each

other and whitespace between groups
l Selection gesture (circling) easily allows selection of entire groups of strokes
l Drawing a line between lines of text splits them apart to make room for new

text.

34

Tivoli Examples

35

24-29 April1993 lNTfRgHr9
first “dips” the pen into the button representing the preferred
pen width. Now as she wipes it across the title strokes, they
are all repainted at the new width. A tap of the draw button
gives her back her regular pen.

Figure 4

Elin starts a list of system-generated objects or slide “deco-
rations.” The list reaches the bottom of the slide, but Frank
mentions a couple of items that were left out and really be-
long near the top of the list. Elin draws a horizontal line
across the slide (what we call a “tear” gesture) where she
wants more room and quickly taps the pen twice. Everything
below the line gets selected, and she moves it down. Then she
writes the desired items in the space just opened up. Some of
the list is no longer visible, so she taps a small arrow button
to scroll the slide. A scroll indicator near the arrow reflects
where the current viewport is on the entire slide. The scrolled
slide is show in Figure 5.

L1 Tj+le(3:4................r..f!?c.r

Iii
H$+J< /db Cdkq~:j:●

E“ cLAv5Qfs
El ~C 1~<tlo~ t’b+4--
EIRq~fsii%m ‘Lyl’iiyz BwBbFIFlm [,.” ,,..s,

ED,.. w,, ,.,., ,,, ,,” ,,.,..,,,, s,,., S., ,,.,. *M

Figure 5

Now it’s time to list issues concerning the objects, and Elin
decides to start listing them on a separate slide; so she taps
the New Slide button and gets a blank slide. At the top she
writes “Issues” and then lists several issues as people men-
tion them. A slide list to the left of the slide area contains a
numbered list of all of the slides she has created. She taps on
the numbers to switch between the two slides.

394

The group gets embroiled in a debate on the virtues of spe-
cial-case representations and display routines. Elin is taking
notes on the arguments, but soon decides this discussion be-
longs on a separate slide; so she selects it all and cuts it with
a pigtail gesture. She then creates a new slide and taps the
Paste button. The strokes that had been cut show upon the
new slide. They remain selected, as seen in Figure 6, inviting
her to move them, which she does.

-uml... ?
1. . ---- -------

. ---------------------------

J- 1NOM.obj~ct & =~~+~,n,..

Figure 6

As the discussion starts to get very technical, Frank begins to
worry about its implications for the display and object man-
agement aspects of the implementation. Kim remembers that
he once prepared a slide for a formal talk illustrating the im-
plementation modules. He goes to the Liveboard, taps the
Get button, and selects from a dialog window the file con-
taining his slides for that talk. Those slides are all added into
the current folder of slides, which now number eight.

Unsure of which of the five new slides was the desired one,
Kim taps the INDEX entry at the top of the slide list. This
produces a system-created slide which consists of the title ar-
eas from the other slides, as shown in Figure 7. He sees that
the desired Architecture slide is number seven. He thinks
about just going to that slide, but decides instead to clean
things up by deleting the unwanted slides. He uses the slide
index to go to each slide in turn and delete it by tapping the
Delete this slide button.

Then he goes to the Architecture slide and starts annotating
it with circles and arrows. The resulting slide is shown in Fig-
ure 8. Occasionally he erases some of these, toggling back
and forth between drawing and erasing by a rapid tap-tap of
the pen. Because the illustration is in the background itis in-
delible. Only the annotations get erased, At one point he eras-
es too much, deleting one arrow too many. He taps on the
Back stroke button until he has recovered the lost arrow.

Elin wants to propose a new twist, but Kim is monopolizing
the group’s attention, so Elin draws a picture on a piece of pa-
per before the idea escapes her. When the opportunity pre-
sents itself she sticks the paper into the Liveboard’s attached
scanner, taps the Scan button, and waits a minute. Then she

24-29 April1993 lNTfRgHr9
first “dips” the pen into the button representing the preferred
pen width. Now as she wipes it across the title strokes, they
are all repainted at the new width. A tap of the draw button
gives her back her regular pen.

Figure 4

Elin starts a list of system-generated objects or slide “deco-
rations.” The list reaches the bottom of the slide, but Frank
mentions a couple of items that were left out and really be-
long near the top of the list. Elin draws a horizontal line
across the slide (what we call a “tear” gesture) where she
wants more room and quickly taps the pen twice. Everything
below the line gets selected, and she moves it down. Then she
writes the desired items in the space just opened up. Some of
the list is no longer visible, so she taps a small arrow button
to scroll the slide. A scroll indicator near the arrow reflects
where the current viewport is on the entire slide. The scrolled
slide is show in Figure 5.

L1 Tj+le(3:4................r..f!?c.r

Iii
H$+J< /db Cdkq~:j:●

E“ cLAv5Qfs
El ~C 1~<tlo~ t’b+4--
EIRq~fsii%m ‘Lyl’iiyz BwBbFIFlm [,.” ,,..s,

ED,.. w,, ,.,., ,,, ,,” ,,.,..,,,, s,,., S., ,,.,. *M

Figure 5

Now it’s time to list issues concerning the objects, and Elin
decides to start listing them on a separate slide; so she taps
the New Slide button and gets a blank slide. At the top she
writes “Issues” and then lists several issues as people men-
tion them. A slide list to the left of the slide area contains a
numbered list of all of the slides she has created. She taps on
the numbers to switch between the two slides.

394

The group gets embroiled in a debate on the virtues of spe-
cial-case representations and display routines. Elin is taking
notes on the arguments, but soon decides this discussion be-
longs on a separate slide; so she selects it all and cuts it with
a pigtail gesture. She then creates a new slide and taps the
Paste button. The strokes that had been cut show upon the
new slide. They remain selected, as seen in Figure 6, inviting
her to move them, which she does.

-uml... ?
1. . ---- -------

. ---------------------------

J- 1NOM.obj~ct & =~~+~,n,..

Figure 6

As the discussion starts to get very technical, Frank begins to
worry about its implications for the display and object man-
agement aspects of the implementation. Kim remembers that
he once prepared a slide for a formal talk illustrating the im-
plementation modules. He goes to the Liveboard, taps the
Get button, and selects from a dialog window the file con-
taining his slides for that talk. Those slides are all added into
the current folder of slides, which now number eight.

Unsure of which of the five new slides was the desired one,
Kim taps the INDEX entry at the top of the slide list. This
produces a system-created slide which consists of the title ar-
eas from the other slides, as shown in Figure 7. He sees that
the desired Architecture slide is number seven. He thinks
about just going to that slide, but decides instead to clean
things up by deleting the unwanted slides. He uses the slide
index to go to each slide in turn and delete it by tapping the
Delete this slide button.

Then he goes to the Architecture slide and starts annotating
it with circles and arrows. The resulting slide is shown in Fig-
ure 8. Occasionally he erases some of these, toggling back
and forth between drawing and erasing by a rapid tap-tap of
the pen. Because the illustration is in the background itis in-
delible. Only the annotations get erased, At one point he eras-
es too much, deleting one arrow too many. He taps on the
Back stroke button until he has recovered the lost arrow.

Elin wants to propose a new twist, but Kim is monopolizing
the group’s attention, so Elin draws a picture on a piece of pa-
per before the idea escapes her. When the opportunity pre-
sents itself she sticks the paper into the Liveboard’s attached
scanner, taps the Scan button, and waits a minute. Then she

Penpoint OS
l Pen-specific OS, created from

the ground up by Go
Corporation

l Ink organized into
“notebooks” and, for the most
part, unrecognized

l However, certain gestures
integrated into the OS for
manipulating digital ink
l Circle to edit, X to delete,

caret to insert

l Special entry fields for text
that should be recognized

36

5. Stroke Input: Recognizing and
Interpreting Digital Ink

37

Recognizing Digital Ink

l A variety of recognition algorithms are available: some simple, some
complex (we’ll discuss a few in class…)

l Some work for full-blown handwriting, others are limited to recognizing
certain fixed shapes or symbols

l Generally: the more complex and featureful the recognizer, the more you
can use it for content recognition. Simpler recognizers are useful mostly
for recognizing a handful of commands.
l Content doesn’t mean just text. Also drawing cleanup, sketch beautification, etc.

l early storyboard support (SILK, Cocktail Napkin)
l sketch recognition (Eric Saund, PARC; others)

l Thus, the choice of recognizer (and power of the recognizer) impacts
the user interface

l TIP: you can do a whole lot with out needing a “real” recognizer

38

Example: Graffiti/Unistroke
l From Palm and/or Xerox
l Innovation: make the recognition problem easier by making the user adapt

her behavior
l So, not quite “natural” media
l Simple alphabet of “unistrokes”

l Each time the pen goes down, assume a new stroke; don’t need to worry
about multistroke recognition

l Close enough to alphabet letters to be memorizable quickly
l Yet easy for the computer to distinguish reliably.

l See “Touch Typing with a Stylus,” D. Goldberg, C. Richardson. CHI 1993

39

Example: Flatland
l Main ideas:

l Whiteboards should be “walk-up-and-
use” (in other words, don’t need to a
launch a special app or tell the system
how some content you’re about to
draw should be processed)

l BUT then allow interpretation to be
applied to digital ink strokes after
you’ve made them

l Domain-specific recognizers, for a
variety of tasks
l Drawing beautification, map drawing,

list management, simple arithmetic

40

system in which the general freeform marking of the
whiteboard is smoothly integrated into a set of tools that can
understand the semantics of particular tasks.
To retain the simplicity of a whiteboard, in Flatland, the
user’s input is always freehand strokes on the board with no
pull-down menus, buttons, handles and the like. At the
simplest level these freehand strokes are inked as they are
drawn on to the board. As previously discussed, these
strokes are grouped into segments. Flatland supports
specific tasks by allowing the user to apply behaviors to
segments. Behaviors interpret input strokes potentially
adding strokes and replacing existing strokes. For example
with the map behavior, a single line is replaced by a double
line to depict a road. Behaviors, however, do not render the
strokes themselves, they just modify the strokes belonging
to a segment. The segments then paint the strokes creating a
unified appearance for the entire board.
Behaviors are implemented so that the behavior only
observes strokes, not lower-level mouse events. Thus,
behaviors must wait until a stroke is completed before it
interprets the stroke. This design helps provide a unified
interface similar to stroking a normal whiteboard as all
strokes look the same.
A working behavior is indicated as an animal figure on top
of the segment. This design helps maintain an informal feel
without menus bars while providing a handle to behavior-
specific functions. The metaphor is of an assistant or muse
that interprets user input and personifies the behavior.

Sample Behaviors
We have designed and implemented a few behaviors to
support typical office whiteboard tasks (see Figure 4).
Flatland’s design goals of simple, informal interaction
extend past the general look-and-feel of the interface into
the design of individual behaviors themselves. Since the
purpose of the behaviors is to support informal, pre-
production tasks, ease-of-use is strongly favored over

FIGURE 4. Flatland Behaviors

providing features for producing a detailed artifact.
Common themes in designing individual behaviors are:
• There are few explicit commands; but strokes are

interpreted on-the-fly.
• Generated output is rendered in a “handdrawn” style.
• Minimal (in any) control widgets are added to the

segment.
• Handwriting recognition is generally not used to limit

the need for error correction and recovery user
interfaces. This design choice limits some potential uses
of the system but significantly simplifies user
interaction.1 The one current exception is the calculator
behavior which requires recognition to be useful.

• “Infinite” undo-redo supports easy error recovery.
To-Do Lists The to-do behavior manages a series of strokes
as a single-column list. The items are not recognized per se,
but remain individual inked strokes. A handdrawn checkbox
is rendered to the left of each item. Subsequent strokes
across the checkbox checks off the item. Strokes across an
item removes it from the list. A simple gesture allows users
to move an item to a new location in the list. After any
change to the list’s contents (e.g. add, remove, reorder) the
list is reformatted.
2D drawing The 2D drawing behavior is a port of
Pegasus[9] to the Flatland architecture. The typical
frustration users have drawing illustrations on their
whiteboards motivates the inclusion of this behavior.
Strokes are neatened to create simple formatted line
drawings. To create an efficient and intuitive drawing
process, Pegasus offers potential new strokes based on the
current structure of the drawing. Without explicit
commands, the user can quickly author compelling and
useful line drawings.
Map Drawing Another common drawing task is sketching
maps for other people. Like the 2D drawing behavior, the
map behavior replaces input strokes with improved strokes.
Single lines become roads with double lines and open
intersections. Again, there are no explicit controls for
creating detailed production quality maps to get in the way
of quickly sketching sufficient and powerful illustrations.
Calculator In the calculator behavior, strokes are interpreted
as columns of numbers to be added or subtracted. Output is
rendered in a hand-drawn style. Successive calculations can
be appended for further interpretation. Likewise input can
be modified at any point to trigger re-interpretation. Instead
of supplying a calculator widget with push buttons and a
display, this behavior leaves a persistent, editable trail that is
more easily shared with others and reused.

Combining Behaviors
The difference between behaviors and traditional
applications is more apparent when one combines multiple
behaviors over time. For example, starting first with the map

1. We are experimenting with off-line handwriting recognition
that makes best guesses at recognizing the content of segments.
Recognized keywords at a reasonable level of confidence can be
used for later retrieval of the segment.

Handwriting (content)
recognition

Lots of resources
•see Web
•good commercial systems

Two major techniques:
•on-line (as you write)

•off-line (batch mode)

Which is harder?

41

Handwriting (content)
recognition

Lots of resources
•see Web
•good commercial systems

Two major techniques:
•on-line (as you write)

•off-line (batch mode)

Which is harder?
Offline. You don’t have the realtime stroke information (direction,
ordering, etc.) to take advantage of in your recognizer... only the
final ink strokes.

42

Other Issues in Pen Input

43

Mixing modes of pen use
Users want free-form content and commands

How to switch between them?

Explicit:

• have an explicit mode switch, a la Graffiti (make a special command gesture
preceding a stroke that should be interpreted as a command)

• special pen action switches that produce a temporary or transient model, e.g., the
barrel switch on the Wacom pen

Implicit:

• Recognize which “mode” applies based on context of the stroke, e.g., Tivoli, Teddy, etc.

44

“Gorilla Arm”
l Challenge when using vertically-oriented touch screen (or pen input).

l Prolonged use results in fatigue/discomfort.

l Credited with a decline in touch/pen input in the 1980’s (think desktop
CRTs) that wasn’t completely resolved until very light portable devices
appeared.

l Some desktop touch interfaces have made a comeback with Windows 8
however!

45

Error correction
Necessary when relying on recognizers (which may often produce incorrect results)

UI implications: even small error rates (1%) can mean lots of corrections, must provide
UI techniques for dealing with errors

Really slows effective input

• word-prediction can prevent errors

Various strategies

• repetition (erase and write again)

• n-best list (depends on getting this from the recognizer as confidence scores)

• other multiple alternative displays

46

Resources

47

Toolkits for Pen-Based Interfaces

l SATIN (Landay and Hong) – Java toolkit
l GDT (Long, Berkeley) Java-based trainable unistroke

gesture recognizer
l OOPS (Mankoff, GT) error correction

48

